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accurate identification of de novo mutations at varying levels of
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The rate of spontaneous (de novo) germline mutation is a key parameter in evolutionary biology, impacting genetic diversity and
contributing to the evolution of populations and species. Mutation rates themselves evolve over time but the mechanisms
underlying the mutation rate variation observed across the Tree of Life remain largely to be elucidated. In recent years, whole
genome sequencing has enabled the estimation of mutation rates for several organisms. However, due to a lack of community
standards, many previous studies differ both empirically – most notably, in the depth of sequencing used to reliably identify de
novo mutations – and computationally – utilizing different computational pipelines to detect germline mutations as well as
different analysis strategies to mitigate technical artifacts – rendering comparisons between studies challenging. Using a pedigree
of Western chimpanzees as an illustrative example, we here quantify the effects of commonly utilized quality metrics to reliably
identify de novo mutations at different levels of sequencing coverage. We demonstrate that datasets with a mean depth of ≤ 30X
are ill-suited for the detection of de novo mutations due to high false positive rates that can only be partially mitigated by
computational filter criteria. In contrast, higher coverage datasets enable a comprehensive identification of de novo mutations at
low false positive rates, with minimal benefits beyond a sequencing coverage of 60X, suggesting that future work should favor
breadth (by sequencing additional individuals) over depth. Importantly, the simulation and analysis framework described here
provides conceptual guidelines that will allow researchers to take study design and species-specific resources into account when
determining computational filtering strategies for their organism of interest.
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INTRODUCTION
Mutations spontaneously occurring in the germline (i.e., de novo
mutations) are a double-edged sword in evolution and medicine.
On the one hand, mutations can be beneficial, facilitating
adaptation to local or changing environments (see the reviews
of Fan et al. 2016 and Harris et al. 2020); on the other, mutations
can be deleterious, causing genetic disease and developmental
disorders (see the review of Acuna-Hidalgo et al. 2016) and
contributing to the mutational load in species threatened with
extinction (see the review of Agrawal and Whitlock 2012).
Consequently, characterizing the rates and patterns by which
mutations arise is an important endeavor both evolutionarily – to
improve our understanding of the demographic and adaptive
history of populations including their historical sizes and inferring
the timing of speciation events – and biomedically – to advance
our knowledge of the genetic underpinnings of heritable disease.
After decades of research focused on the indirect estimation of

mutation rates – using both genetic screens for monogenic
Mendelian mutations underlying diseases with major phenotypic
effects and phylogenetic approaches relying on differences
observed between species (see the review of Pfeifer 2020) –
recent advances in high-throughput sequencing have enabled the

direct, and relatively unbiased, identification of de novo mutations
by searching whole-genome sequences of trios (parents and their
offspring) for mutations that constitute Mendelian violations.
Using this strategy, germline mutation rates have been estimated
for both humans (Roach et al. 2010; Conrad et al. 2011; Campbell
et al. 2012; Kong et al. 2012; Michaelson et al. 2012; Jiang et al.
2013; Besenbacher et al. 2015; Francioli et al. 2015; Yuen et al.
2015; Goldmann et al. 2016; Rahbari et al. 2016; Wong et al. 2016;
Jónsson et al. 2017; Maretty et al. 2017; Turner et al. 2017; Sasani
et al. 2019; Kessler et al. 2020) and closely-related non-human
primates (Venn et al. 2014; Pfeifer 2017a; Tatsumoto et al. 2017;
Thomas et al. 2018; Besenbacher et al. 2019; Wang et al. 2020, Wu
et al. 2020; Bergeron et al. 2021; Campbell et al. 2021; Yang et al.
2021; Versoza et al. 2024) as well as several other vertebrates
(Smeds et al. 2016; Feng et al. 2017; Milholland et al. 2017; Martin
et al. 2018; Koch et al. 2019; Lindsay et al. 2019; Wang et al.
2022a,b; Bergeron et al. 2023) and invertebrates (Keightley et al.
2014, 2015; Liu et al. 2017). These studies, providing the first direct
empirical insights into the germline mutation rate across the Tree
of Life, confirmed earlier observations that rates of mutation vary
markedly not only between species but also between individuals
and populations of the same species (see the review of Baer et al.
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2007) – however, the factors driving this variation remain largely
to be elucidated.
In addition to the biological and life history factors likely at play,

recent work by Bergeron and colleagues (2022) demonstrated that
methodological differences in computational pipeline design can
affect the reliable detection of de novo mutations from high-
throughput sequencing data and thus ultimately mutation rates
estimated. Specifically, using a trio of rhesus macaques (Macaca
mulatta) sequenced at medium to high coverage (40X to 70X per
individual), the authors observed a nearly two-fold variation in
mutation rate estimates (ranging from 0.46 × 10-8 to 0.85 × 10-8

per base pair per generation) due to differences in computational
filtering strategies necessary to distinguish genuine, but often
extremely rare, de novo mutations from orders of magnitude
more frequent sequencing errors as well as alignment, variant
calling, and genotyping artefacts. As studies published to date by
different research groups have applied a variety of custom
computational pipelines to identify high-confidence de novo
mutations (see Supplementary Table 1 in Bergeron et al. 2022),
this sensitivity to the implemented filtering strategies inherently
limits comparison across studies and organisms.
This, in turn, highlights the pressing need of a standardized

community-level consensus and best practices in the develop-
ment and comparison of computational pipeline designs.
Bergeron and colleagues (2022) made an important step towards
this goal – however, as their study was based on empirical data for
which the “ground truth” was unknown, their evaluations were
limited to 43 candidate sites that were validated via PCR
amplification and Sanger sequencing. As such, the performance
of different computational filters and their thresholds to reliably
detect de novo mutations while mitigating false positives remains
to be comprehensively benchmarked at a genome-wide scale.
Such a benchmarking experiment necessarily requires knowledge
of a “ground truth” dataset (see the discussion in Pfeifer 2021), i.e.,
a dataset for which the positions of all de novo mutations are
known a priori – something which is generally not feasible in a
laboratory setting due to the limited number of sites that can
practically be manually validated. Moreover, despite continuously
decreasing costs, high-throughput sequencing of large pedigrees
remains an expensive endeavor for many scientific laboratories,
making it necessary to carefully consider study design, most
notably in terms of the depth of sequencing coverage needed to
obtain high-confident de novo mutation call sets. Yet, similar to
computational pipeline designs, no community standard currently
exists for pedigree-based mutation rate studies with regards to
sequencing coverage, with previous study designs ranging from
relatively low ( < 20X) to ultra-high ( > 150X) coverage (Supple-
mentary Fig. S1).
To provide recommendations for future germline mutation rate

studies, we here developed a simulation and analysis framework
to quantify the effects of commonly applied computational filter
criteria and their thresholds on the accurate identification of de
novo mutations at varying levels of sequencing coverage, and
provide guidance with regards to the minimum coverage
necessary for reliable de novo mutation calling from Illumina
sequencing data (the de facto standard in the field). Using a trio of
chimpanzees as an illustrative example, this framework serves as a
conceptual guideline for in silico benchmarking for future
pedigree-based mutation studies.

MATERIALS AND METHODS
Quantifying the effects of computational filter criteria and thresholds on
the accurate identification of de novo mutations at varying levels of
sequencing coverage requires a “ground truth” dataset (see the discussion
in Pfeifer 2021). To obtain such a dataset, reads were simulated from
polymorphism-aware, haplotype-resolved reference assemblies (“Real
data”) and de novo mutations were spiked in at the species-specific

mutation rate (“Simulated data”). Thereby, the incorporation of polymorph-
isms acts as “noise” in the simulated data, complicating both the accurate
mapping of reads and the identification of de novo mutations in a manner
similar to that of genuine resequencing data (Pfeifer 2017b).

Real data
To incorporate realistic levels of polymorphisms in the simulated reads,
variants were called from a trio of Western chimpanzees (Pan troglodytes
verus) previously sequenced to ultra-deep coverage ( > 150X) on an
Illumina HiSeq 2000 platform (Tatsumoto et al. 2017). Specifically,
sequencing data was downloaded from the DNA Data Bank of Japan
(BioProject: PRJDB3537) and run through a modified version of the
Genome Analysis Toolkit (GATK) Germline Short Variant Discovery pipeline
(van der Auwera and O’Connor 2020), using GATK v.4.1.8.1 with default
parameters unless noted otherwise. In brief, downloaded .fastq files were
intermittently converted to unmapped .bam files (FastqToSam) to mark
adapter sequences (MarkIlluminaAdapters). The resulting .bam files were
converted back to .fastq files (SamToFastq) before mapping the reads to
the species-specific reference assembly (panTro6; Kronenberg et al. 2018)
downloaded from NCBI GenBank (accession number: GCA_002880755.3)
using BWA-MEM v.0.7.17 (Li and Durbin 2009). Mappings were merged
back with the original unmapped .bam files (MergeBamAlignment) to
preserve metadata. Next, duplicate reads were marked (MarkDuplicates),
indels re-aligned (RealignerTargetCreator and IndelRealigner), and base
quality scores recalibrated (BaseRecalibrator and ApplyBQSR) using a
previously published variant catalogue of five Western chimpanzees
(Prado-Martinez et al. 2013) to mask out sites of expected variation. A
second round of duplication marking was performed (MarkDuplicates)
prior to calling (HaplotypeCaller) and jointly genotyping variants (GATK
v.3.7.0 GenotypeGVCFs), assuming a species-specific heterozygosity rate of
8 × 10-4 (‘ --heterozygosity 0.0008 ‘; Prado-Martinez et al. 2013). The dataset
was limited to autosomal biallelic single nucleotide polymorphisms (SNPs)
with genotype information in all individuals (SelectVariants with the
‘ --restrict-alleles-to BIALLELIC ‘, ‘ --select-type-to-include SNP ‘, and ‘ -select
‘AN== 6' ‘ flags). SNPs were filtered following the GATK Best Practices for
hard-filtering germline short variants (applied filter criteria: QD < 2.0,
SOR > 3.0, FS > 60.0, MQRankSum < –12.5, and ReadPosRankSum < –8.0;
with acronyms as defined by the GATK package) and Mendelian violations
removed (FindMendelianViolations). The resulting dataset contained
4,634,632 high-quality autosomal biallelic SNPs, with a transition-
transversion ratio of 1.98, similar to previous observations in the species
(Auton et al. 2012).
In order to create a polymorphism-aware, haplotype-resolved reference

assembly for each individual in the trio, the variant dataset was first phased
using BEAGLE v.4.0 (Browning and Browning 2007) and phased variants
were then embedded within the species-specific reference assembly
(panTro6) using the vcf2fasta command built-in vcflib v.1.0.2 (Garrison et al.
2022). In other words, each individual was represented in a haplotype-
resolved manner (i.e., by two assemblies, one per haplotype including the
corresponding phased variants). Including this haplotype structure in the
simulation scheme as detailed below is crucially important as variant
callers (such as the Genome Analysis Toolkit used in this study) rely on
haplotype information to accurately call and genotype variants.

Simulated data
For each individual in the trio, 10 replicates of 100 bp paired-end reads
were simulated from these polymorphism-aware, haplotype-resolved
reference assemblies using Mason v.2.0.9 (Holtgrewe 2010) – a simulator
that well-mimics genomic characteristics of empirical datasets (for a
performance evaluation of several popular short-read simulators, see
Milhaven and Pfeifer 2023) – with the ‘-oa’ flag enabled to output a
“golden” (ground truth) set of mapped reads that specify the regions
where the reads originated from. Thereby, sequencing errors were
introduced in the simulated reads using Mason’s default error model
(Holtgrewe 2010). Parents were simulated to 100X coverage whereas the
offspring was simulated to a higher coverage (120X) to allow for binomial
sampling of reads from regions containing de novo mutations to mimic
patterns of genuine heterozygote sites (Supplementary Fig. S2). Next, de
novo mutations were introduced in the offspring by randomly sampling
sites on the autosomes at the species-specific mutation rate of ~10-8 per
base pair per generation (Venn et al. 2014; Tatsumoto et al. 2017;
Besenbacher et al. 2019) using an in-house script (mutator.py) and
introducing mutations at these sites with an allele balance of 1:1 (reference
allele vs. alternative allele) using jvarkit v.2021.10.13 (https://github.com/
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lindenb/jvarkit) (see Supplementary Table S1 for the sequence coordinates
of the de novo mutations that were introduced in each replicate). In order
to implement a computational de novo mutation detection pipeline similar
to those developed in earlier studies (for an overview, see Bergeron et al.
2022), datasets were converted to .fastq (using GATK v.4.1.8.1 SamToFastq;
van der Auwera and O’Connor 2020) – the de facto standard format used
by many sequencing centers.

De novo mutation detection pipeline
For each replicate, simulated reads were mapped to the species-specific
reference assembly (panTro6) using BWA-MEM v.0.7.15 (Li and Durbin
2009) before marking duplicate reads (GATK v.4.1.0.0 MarkDuplicates; van
der Auwera and O’Connor 2020). Mapped reads were down-sampled to
coverages ranging from 10X to 100X per individual in 10X increments
using a previously established pipeline (Milhaven and Pfeifer 2023). For
each down-sampled dataset, base quality scores were recalibrated (GATK
v.4.1.0.0 BaseRecalibrator and ApplyBQSR), excluding loci known to vary in
the population (Prado-Martinez et al. 2013). Mapping accuracy was
assessed by comparing the mappings of the simulated reads including
the spiked-in de novo mutations in the offspring with the “golden”
(ground truth) dataset using an in-house script (mapping_stats.py)
(Supplementary Table S1).
Variants were called (GATK v.4.1.8.1 HaplotypeCaller), assuming a

species-specific heterozygosity rate of 8 × 10-4 (‘ --heterozygosity 0.0008 ‘;
Prado-Martinez et al. 2013). To obtain a high-confidence dataset, only
reads with a minimum mapping quality of 40 (corresponding to a
probability of 99.99% that a read was mapped correctly) were considered
during variant calling (‘ --minimum-mapping-quality 40 ‘) and down-
sampling of reads that shared the same start position was disabled to take
all high-quality reads at any given site into account (‘ --max-reads-per-
alignment-start 0 ‘). In addition, as reads were simulated without PCR bias,
the ‘ --pcr-indel-model ‘ was set to ‘ NONE ‘ to disable PCR error correction
on variant likelihoods. Next, variants were jointly genotyped (GATK v.3.7.0
GenotypeGVCFs), and the dataset was limited to biallelic SNPs with
genotype information in all individuals (GATK v.4.1.8.1 SelectVariants with
the ‘ --restrict-alleles-to BIALLELIC ‘, ‘ --select-type-to-include SNP ‘, and
‘ --select ‘AN== 6 ‘ flags). From this dataset, de novo mutation candidates
were identified by selecting sites at which the offspring was heterozygous
despite both parents being homozygous for the reference allele (GATK
v.4.1.8.1 SelectVariants ‘ --select ‘vc.getGenotype(“Offspring”).isHet()’ --select
‘vc.getGenotype(“Sire”).isHomRef()' --select ‘vc.getGenotype(“Dam”).isHom-
Ref()’ ‘).

Computational filter criteria and thresholds
With de novo mutation candidates on hand, it was next necessary to apply
computational filter criteria to differentiate genuine de novo mutations
from technical artefacts resulting from both sequencing errors as well as
errors introduced by the de novo mutation detection pipeline (mapping,
variant calling, and genotyping) (Pfeifer 2021). In order to determine
suitable computational filtering strategies at varying levels of sequencing
coverage, the sensitivity and specificity of several commonly used
computational filter criteria and thresholds were assessed (thresholds
were varied between the minimum and maximum values listed in
Supplementary Table S2): (1) the probability that a site is variable among
the trio (variant confidence; QUAL), (2) the probability that a site is
genotyped correctly in an individual of the trio (genotype quality; GQ), (3)
the scaled depth of coverage at a site in the trio (depth; DP), (4) the
alternative allele depth in the parents (allele depth; AD), (5) the proportion
of reads that support the alternative allele relative to the total depth of
coverage at a site in the offspring (allele balance; AB), and (6) GATK Best
Practices hard-filter criteria for germline short variants (filter criteria:
QD < 2.0, SOR > 3.0, FS > 60.0, MQRankSum< -12.5, and ReadPosRank-
Sum < -8.0; with acronyms as defined by the GATK package). The effect
of removing sites known to segregate in the population was assessed
based on a recently published variant catalogue of 11 Western
chimpanzees (Brand et al. 2022). In addition to these commonly used
computational filter criteria, we tested whether the information obtained
during the variant calling step could be harnessed to distinguish between
genuine de novo mutations and technical artefacts. Specifically, to improve
accuracy in regions exhibiting evidence of variation, GATK’s Haplotype-
Caller builds a graph-based de novo assembly from the sequencing reads
to construct candidate haplotypes, against which it then re-aligns the
reads to call variants and assign genotypes (van der Auwera and O’Connor
2020). We postulated that the depth of coverage in such reassembled

regions in the parents – which, at sites of genuine de novo mutations,
should be homozygous for the reference allele and thus, not display any
variation – might be a suitable additional filter (referred to from hereon as
“reassembly” filter) to help tease apart genuine de novo mutations from
technical artefacts.
Each computational filter criterion was first assessed individually in order

to determine the best threshold (defined here as the threshold that
mitigated the largest number of false positives while retaining the majority
of genuine de novo mutations) and benchmark its sensitivity and
specificity at varying levels of sequencing coverage (see Supplementary
Figs. S3-S12 for replicates 1-10). Afterward, the best-performing filter
criteria and thresholds were applied sequentially in order of their
effectiveness (see Supplementary Table S3 for the best thresholds in
replicates 1-10 and Supplementary Table S4 for the best thresholds across
replicates) to obtain a high-confidence set of de novo mutation candidates
for each replicate (see Supplementary Figs. S13-S22 for information
regarding the datasets resulting from this sequential application of the
best performing filter criteria in replicates 1-10).

Visual curation
The validation of de novo mutation candidates is a critical aspect of
mutation rate studies given the often high false positive rates. Given that
PCR validation and Sanger sequencing is both costly and difficult in non-
model organisms, many previous studies employ alternative validation
strategies; for example, the visual inspection of a high-confidence set of de
novo mutation candidates to distinguish genuine de novo mutations from
false positives based on read alignments and available variant calling /
genotyping information. As an illustrative example of the feasibility of this
approach, the candidate de novo mutations from the highest coverage
(100X) data were curated visually using the Integrative Genomics Viewer
v.2.14.0 (IGV; Robinson et al. 2011) focusing on candidate sites and
surrounding 20 bp regions (IGV screenshots are provided as Supplemen-
tary Material at the GitHub repository: https://github.com/PfeiferLab/
DNM_coverage). To avoid any potential biases, visual curation was
performed independently by three lab members without prior knowledge
of whether a site contained a genuine de novo mutation.

RESULTS AND DISCUSSION
In order to study the effects of computational filter criteria and
thresholds on the detection of de novo mutations at varying levels
of sequencing coverage, 10 replicates of short-read Illumina
sequencing data (the de facto standard in the field) were
simulated from polymorphism-aware, haplotype-resolved refer-
ence assemblies for a trio of Western chimpanzees (Pan
troglodytes verus) to mean depths ranging from 10X to 100X per
individual (in 10X increments) and de novo mutations were
introduced at random in the offspring at a species-specific
mutation rate of ~10-8 per base pair per generation, resulting in
an average of 52 de novo mutations (range: 35-65 de novo
mutations) across the autosomal genome per replicate (Supple-
mentary Table S1). After mapping the simulated reads of each
individual to the species-specific reference genome (panTro6),
variants were called and genotyped using the Genome Analysis
Toolkit following standard best practices in the field (for details,
see “Materials and Methods”). Next, candidate de novo mutations
were identified as SNPs at which the offspring was heterozygous
despite both parents being homozygous for the reference allele.
Notably, none of the lowest (10X) coverage datasets captured

all introduced de novo mutations (see Supplementary Figs. S3-S12
for replicates 1-10) – with the missing de novo mutations either
having been mis-called as homozygous for the reference allele or
alternative allele in the offspring, or being absent from the dataset
as their supporting reads exhibited mapping quality scores below
the calling threshold – strongly suggesting that a mean depth of
10X is insufficient to comprehensively identify de novo mutations
at a genome-wide scale. Similarly, the majority of the replicates at
20X coverage missed one or more discoverable de novo
mutations. All other datasets (30X-100X) contained all discover-
able de novo mutations, i.e., all de novo mutations with the
exception of those randomly introduced in inaccessible (gap)
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regions of the reference genome and those mis-called / mis-
genotyped by the variant caller (4 and 5 out of 524 de novo
mutations introduced across the 10 replicates, respectively;
Supplementary Table S1). However, the number of false positives
– that is, segregating polymorphisms or sequencing errors mis-
classified as de novo mutations – varied widely, between ~75k in
the raw (unfiltered) low (10X) coverage dataset (standard
deviation [sd]: 1,183), ~1.3k in the raw medium (50X) coverage
dataset (sd: 35), and ~750 in the raw high (100X) coverage dataset
(sd: 29; Supplementary Figs. S3-S12), highlighting the importance
of sequencing depth to limit spurious de novo mutation calls.
To reduce the number of false positives in the call set, candidate

sites were filtered based on a variety of commonly utilized quality
statistics and sequence metrics. Out of the tested computational
filter criteria and thresholds (Supplementary Table S2), the
genotype quality (GQ) score – assessing the probability that a
site is genotyped correctly in an individual – showed the largest
effect on reducing the false positive rate, with the best threshold
(defined here as the threshold that filtered out the largest number
of false positives while retaining the majority of genuine de novo
mutations in a call set; see Supplementary Table S3 for the
thresholds applied to replicates 1-10 and Supplementary Table S4
for the best threshold across replicates) reducing the false positive
rate in the low (30X), medium (50X), and high (100X) coverage
datasets by an average of 93.3% (sd: 3.4%), 97.8% (sd: 1.9%), and
96.6% (sd: 0.9%), respectively. Relatedly, the variant confidence
(QUAL) score – assessing the probability that a site is variable
among the trio – exhibited the second largest effect for datasets
with a minimum coverage of 30X, lowering the false positive rate
in the 30X, 50X, and 100X coverage datasets by 44.5% (sd: 13.7%),
75.5% (sd: 6.3%), and 87.3% (sd: 2.3%), respectively. However, as
each individual read contributes to the score, scores reported by
the variant caller appeared artificially inflated in the high coverage
( ≥ 70X) datasets. Furthermore, the application of a QUAL filter
negatively impacted the low coverage (10X and 20X) datasets by
removing genuine de novo mutations, likely due to the small
number of reads at each site (Supplementary Figs. S3-S12).
Although a combined filtering on GQ and QUAL scores was

sufficient to eliminate the vast majority (mean: 98.5%; sd: 0.7%) of
false positives in the highest coverage (100X) datasets (Supple-
mentary Figs. S13-S22), additional filter criteria were required for

all other datasets. Specifically, both the lower threshold of the
overall depth of coverage (DPmin) – reflecting the power to
accurately determine the genotype of an individual at a given site
– and the lower threshold of the proportion of reads that support
the alternative allele in the offspring relative to the total depth of
coverage at a given site (ABmin) played an important role in further
decreasing the false positive rates. Additional filtering using the
alternative allele depth in the parents (AD) – guarding against the
alternative allele being carried by one of the parents and hence
the candidate site not constituting a Mendelian violation – as well
as upper thresholds on the allele balance in the offspring (ABmax)
and the overall depth of coverage (DPmax) – guarding against mis-
genotyped sites and mis-called variants in regions of unresolved
paralogs in the reference genome (for a discussion, see Pfeifer
2017b) – aided the further reduction of false positives, particularly
in the low coverage (10X to 30X) datasets (Supplementary Figs.
S13-S22). Information about variants known to segregate in the
population (here using a recently published variant catalogue of
11 Western chimpanzees; Brand et al. 2022) was also effective in
removing spurious de novo mutation candidates (Supplementary
Figs. S3-S12) – however, the application of this filter criterion did
not provide any additional benefit beyond the commonly used
computational filter criteria described above. Moreover, it should
be noted that this procedure may lead to the exclusion of genuine
de novo mutations, particularly in genomic regions experiencing
high mutation rates (such as CpG sites; Hwang and Green 2004)
where the assumption of an infinite sites model is likely violated.
In contrast, the application of GATK’s Best Practice hard-filter
criteria, frequently utilized to obtain high-quality germline variant
calls (see Supplementary Table 1 in Bergeron et al. 2022), led to
the exclusion of genuine de novo mutations in several of the 10X
and 20X datasets.
Overall, a joint application of these commonly used computa-

tional filter criteria (Fig. 1, and see Supplementary Table S4 for the
best thresholds across replicates) successfully reduced the false
positive rates to an average of 24.5% in the 40X dataset, 14.2% in
the 50X, and between 9.1% and 11.5% in the 60X to 100X datasets
(Fig. 2a, and see Supplementary Table S5 for details regarding
each individual replicate). The additional application of the newly
developed reassembly filter further aided the reduction of false
positive rates to an average of 22.6% in the 40X dataset, 12.1% in

Fig. 1 Computational filter criteria and thresholds that mitigated the largest number of false positives while retaining the majority of
genuine de novo mutations at varying levels of sequencing coverage across replicate runs. Filter criteria include a minimum/maximum
allele balance (ABmin/max) filter in the offspring, an alternative allele depth (AD) filter in the parents, a minimum/maximum depth of coverage
(DPmin/max) filter in the trio, a genotype quality (GQ) filter in the trio, a variant confidence (QUAL) filter in the trio, and a reassembly filter in the
parents (additional details are provided in Supplementary Table S4).
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the 50X, and between 6.1% and 9.6% in the 60X to 100X datasets
(Fig. 2b). Interestingly though, the false positive rates slightly
increased in datasets with coverages above 60X, likely due to the
larger number of reads supporting spurious de novo mutation
candidates, thus falsely boosting the confidence of the variant
caller, particularly in (frequently misaligned) repetitive regions of
the genome. In contrast, despite the application of several filter
criteria, false positive rates remained high in the low coverage
datasets at an average of 99.9%, 90.2%, and 44.4% at a mean
depth of 10X, 20X, and 30X, respectively. Furthermore, the false
negative rates at the lowest coverages (10X and 20X) was non-
negligible (on average 15.5% and 4.0%, respectively).
Taken together, our study suggests that datasets with mean

depths of ≤ 30X are ill-suited for the detection of de novo
mutations due to both high false negative and high false positive
rates, the latter of which can only be partially mitigated by

commonly applied quality statistics. In contrast, medium coverage
(40-60X) data together with minimal filtering enables the
comprehensive and reliable identification of de novo mutations
at low false positive rates, resulting in high-confidence candidate
sets that can be further validated experimentally using an
orthogonal sequencing technology (such as Sanger sequencing)
or visually by inspecting the genomic regions of interest. For the
sake of an example, three researchers independently visually
investigated the high-confidence set of de novo mutation
candidates in the highest coverage (100X) data of this study. All
investigators correctly distinguished between genuine de novo
mutations and technical artifacts due to sequencing, mapping,
calling, and genotyping errors frequently located in low-
complexity and repetitive regions of the genome (Supplementary
Fig. S23 provides an example of the IGV screenshots used for
visual curation; the complete series of screenshots is provided as

Fig. 2 Misclassification rates. False negative rates (FNRs) and false positive rates (FPRs) after the sequential application of the best
computational filter criteria and thresholds at varying levels of sequencing coverage (a) without and (b) with the newly developed reassembly
criterion (additional details regarding each individual replicate are provided in Supplementary Table S5).
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Supplementary Materials at the GitHub repository: https://
github.com/PfeiferLab/DNM_coverage), demonstrating the power
of manual curation for validation. Lastly, confirming earlier work
suggesting that increased sequencing depth might exhibit
marginal effects on mitigating false positive calls in empirical
data (Koch et al. 2019; Wu et al. 2020), no improvement in de novo
mutation calling was observed at higher levels of coverage (70-
100X), indicating that a point of diminishing returns likely exists
for any given study design. We thus recommend future studies to
favor breadth (by sequencing additional individuals) rather than
depth beyond a mean coverage of 40-60X.

Closing thoughts
Advances in high-throughput sequencing have enabled the direct
detection of de novo mutations from whole-genome pedigree
data – however, methodological differences and a lack of
community standards currently prohibit meaningful comparisons
across studies and organisms. Looking forward, it will likely remain
challenging to achieve consistency in the field, particularly with
regards to study design, which depends upon both resources
available for the species of interest – most notably, the contiguity,
completeness, and correctness of the reference genomes used in
the analyses which varies between model and non-model
organisms – as well as economic factors – such as the costs
associated with sampling and sequencing. Nevertheless, the
conceptual guidelines presented here using a trio of Western
chimpanzees as a case study provide important in silico bench-
marks for future pedigree-based mutation studies. Specifically, the
developed simulation and analysis framework will allow research-
ers to stratify the performance of computational filter criteria by
study design – taking into account potential biases arising from
library preparation, sequence platform-specific read lengths and
error rates, as well as depth of coverage – and publicly available
genomic resources for any species of interest.

Data archiving
The versions, settings, and parameters of the software used in this
study are described in the Materials and Methods section; all
custom scripts used in the analyses are available at the GitHub
repository: https://github.com/PfeiferLab/DNM_coverage. Ana-
lyses were based on whole-genome sequencing data of a trio of
Western chimpanzees available from the DNA Data Bank of Japan
(BioProject: PRJDB3537) and the chimpanzee reference assembly
(panTro6) available from NCBI GenBank (accession number:
GCA_002880755.3).
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