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Abstract
Building evolutionarily appropriate baseline models for natural populations is not only important for answering fun
damental questions in population genetics—including quantifying the relative contributions of adaptive versus non
adaptive processes—but also essential for identifying candidate loci experiencing relatively rare and episodic forms 
of selection (e.g., positive or balancing selection). Here, a baseline model was developed for a human population of 
West African ancestry, the Yoruba, comprising processes constantly operating on the genome (i.e., purifying and 
background selection, population size changes, recombination rate heterogeneity, and gene conversion). 
Specifically, to perform joint inference of selective effects with demography, an approximate Bayesian approach 
was employed that utilizes the decay of background selection effects around functional elements, taking into account 
genomic architecture. This approach inferred a recent 6-fold population growth together with a distribution of fit
ness effects that is skewed towards effectively neutral mutations. Importantly, these results further suggest that, al
though strong and/or frequent recurrent positive selection is inconsistent with observed data, weak to moderate 
positive selection is consistent but unidentifiable if rare.

Key words: background selection, demographic inference, distribution of fitness effects, approximate Bayesian com
putation, human population genomics.
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Introduction
Quantifying the relative contributions of adaptive versus 
nonadaptive processes in shaping observed levels of gen
omic variation remains difficult. This is largely due to the 
fact that multiple evolutionary processes can affect pat
terns of variation in a similar manner, making it challen
ging to disentangle their individual contributions. For 
instance, while genetic hitchhiking effects resulting from 
both recurrent selective sweeps (Maynard Smith and 
Haigh 1974) and background selection (BGS) 
(Charlesworth et al. 1993) may skew the allele frequency 
distribution towards rare alleles (Kim 2006; Nicolaisen 
and Desai 2012, 2013; Ewing and Jensen 2016; Johri et al. 
2021), neutral population growth can result in a similar 
skew (see review of Charlesworth and Jensen 2021). In add
ition to conflicting signatures created by different evolu
tionary processes, heterogeneity in the rates of mutation 
and recombination as well as gene density across the gen
ome add to the noise generated by these processes. Thus, 
in order to accurately quantify the frequency of, and iden
tify candidate loci experiencing, rare and episodic forms of 
selection (such as positive selection), one must first con
struct an evolutionary baseline model that includes the ef
fects of constantly acting evolutionary processes, such as 
genetic drift resulting from the underlying nonequilibrium 

population history as well as purifying and BGS caused by 
the constant input of deleterious mutations (Johri, 
Aquadro, et al. 2022). As most new fitness-impacting mu
tations are indeed deleterious (see review of Bank et al. 
2014), it is particularly important to correct for them 
when predicting patterns of genomic variation in and 
around functional regions—however, the interplay of 
these purifying and BGS effects with population history 
is nontrivial (Johri et al. 2020; 2021).

Building an appropriate baseline model thus requires 
the quantification of parameters describing the popula
tion history as well as those defining the distribution of fit
ness effects (DFE) of new deleterious mutations. As 
accurately inferring parameters of the DFE requires correc
tions for the demographic history of a population 
(Eyre-Walker and Keightley 2007; Boyko et al. 2008), a 
common workaround is to follow a two-step approach 
whereby alleles at putatively neutral sites are utilized to 
obtain the demographic history, and the DFE is then in
ferred from variation at functional sites conditional on 
that estimate of demography (see review of Johri, 
Eyre-Walker, et al. 2022). However, apart from the diffi
culty of identifying genuinely neutral sites in many organ
isms, even if these sites are successfully identified, they may 
still experience BGS effects due to linkage with directly se
lected sites. As neutral demographic estimators do not 
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account for this effect, the resulting skew in the site fre
quency spectrum (SFS) owing to BGS will often be misin
terpreted as population growth (Ewing and Jensen 2014; 
Johri et al. 2021). Consequently, it is preferable to simultan
eously account for the linked effects of purifying selection 
when inferring parameters of population history, high
lighting the importance of performing joint inference of 
the DFE with demography.

In this study, we utilized the joint inference approach of 
Johri et al. (2020) in an approximate Bayesian computa
tional framework (ABC) (Beaumont et al. 2002), in order 
to uniquely infer the joint parameters of purifying selec
tion and demography in a human population, the 
Yoruba from Ibadan, Nigeria (YRI). This approach utilizes 
the decay of BGS effects around functional regions while 
correcting for the specific genome architecture as well as 
the underlying heterogeneity in recombination and gene 
conversion rates across the genome, and has previously 
been shown to perform well across arbitrary DFE shapes 
(Johri et al. 2020, 2021). Furthermore, as the method 
makes no a priori assumptions about the neutrality of spe
cific site types (e.g., synonymous sites), it is also robust to 
the presence of weak selection at these sites (Johri et al. 
2020). Our inference procedure suggests recent popula
tion growth, together with a DFE strongly skewed towards 
effectively neutral and weakly deleterious mutations. We 
compare this finding with previous estimates based 
upon two-step inference approaches and investigate the 
statistical identifiability of positively selected mutations 
within the context of this estimated baseline model.

Results & Discussion
The expected pattern of decay of BGS effects around exo
nic regions (see Johri et al. 2020) was used to perform the 
joint inference of DFE-shape with population size change 
in the Yoruba population, while correcting for region- 
specific rates of crossing over and genetic architecture. 
As gene conversion can significantly affect hitchhiking 
effects around functional genomic elements 
(supplementary fig. S1, Supplementary Material online), 
region-specific rates of gene conversion were also newly in
corporated into this inference framework. As the direct 
and linked effects of purifying selection were modeled spe
cifically for a single exon, this method is applicable to the 
subset of exons in the genome for which interference ef
fects from other nearby functional regions are minimal.

Selecting Exons in the Human Genome
In order to identify such exons, the recovery of nucleotide 
diversity (π) at neutral sites due to BGS was predicted the
oretically for each exon in the human genome (based upon 
the DFE inferred by Keightley and Eyre-Walker 2007), using 
equations 3a and 3b of Johri et al. (2020). More specifically, 
it has been shown previously (Johri et al. 2020) that if the 
DFE of new mutations follows a uniform distribution, ana
lytical expressions for the nucleotide diversity at linked 

neutral sites near a functional element can be obtained. 
Thus, for the purpose of this study, we assumed that the 
DFE of new deleterious mutations was comprised of four 
nonoverlapping uniform distributions (fig. 1a), such that 
an f0 proportion of all new mutations was neutral 
(2Nes = 0), an f1 proportion was weakly deleterious 
(1 < 2Nes ≤ 10), an f2 proportion was moderately deleteri
ous (10 < 2Nes ≤ 100), and an f3 proportion was strongly 
deleterious (100 < 2Nes ≤ 2Ne), where Ne is the effective 
population size and s > 0 represents the selection coefficient 
against homozygotes. Nucleotide diversity relative to that ex
pected under strict neutrality, at a site that is physically at a 
distance z from a selected site, is given by the following:

B =
π
π0

∼ exp [−E(t, z)] (1) 

such that t = sh where h is the dominance coefficient and

E(t, z) =
μt

[t + (g + rz)(1 − t) + rx(1 − t)]2 (2) 

where μ is the mutation rate, g is the gene conversion rate, 
and r is the crossover rate per site per generation. In order 
to account for BGS effects generated by a functional element 
of length L, with t following the probability density function 
φ(t), the expression above can be integrated over both:

B ∼ exp − ∫∫E(t, z)dzdt
􏼂 􏼃

= exp[−F] (3) 

Upon integration, F was obtained (as shown in Johri et al. 
2020) as follows:

F

=
μ

r(1 − a)
1 +

a
(1 − a)(ti+1 − ti)

ln
a + (1 − a)ti

a + (1 − a)ti+1

􏼔 􏼕􏼚 􏼛

(4) 

−
μ

r(1 − b)
1 +

b
(1 − b)(ti+1 − ti)

ln
b + (1 − b)ti

b + (1 − b)ti+1

􏼔 􏼕􏼚 􏼛

where a = g + ry and b = g + r(y + L), where y is the number 
of sites between the neutral site and the end of the functional 
region and ti corresponds to the boundaries of the bins. As a 
DFE comprised of four bins was assumed, the effect of all bins 
was summed up as follows:

F(t) =
􏽘3

i=0

fi
ti+1 − ti

∫ti+1

ti
F(t)dt (5) 

For the purpose of these analytical predictions, the gene con
version rate was assumed to be zero, which results in conser
vative estimates of B. The DFE inferred by Keightley and 
Eyre-Walker (2007) was assumed such that f0 = 0.22, f1 = 
0.27, f2 = 0.13, f3 = 0.38 and all mutations were assumed 
to be semidominant. Using the above equations (1–5) 
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derived in Johri et al. (2020), it is possible to analytically cal
culate expected values of nucleotide diversity as one moves 
away from a functional region. The expected number of bases 
required for a 50% recovery of diversity (π50) was calculated 
as detailed in the Methods. Note that this decay of nucleotide 
diversity due to BGS is dependent on the length of each exon 
as well as the local recombination rate and thus is specific to 
the human population under consideration. This analytical 

approach was applied to identify a subset of exons for which 
there were no other exons or large (>500 bp) functionally 
important regions (sno/miRNAs and phastCons elements; 
Siepel et al. 2005) present within 4 × π50 bases of the ends 
of the exons. In addition, in order to observe sufficient BGS 
effects, our application was limited to larger exons, sized be
tween 2 and 6 kb. A total of 465 such autosomal exons were 
identified in the human genome (i.e., those that were 

FIG. 1. (a) Model and parameters inferred by the ABC method. The left panel shows the DFE while the right panel shows the single, recent size 
change demographic model fit to the data. All inferred parameters are indicated in blue font. (b) Schematic of the expected number of bases 
(π50) to reach a 50% recovery of nucleotide diversity due to BGS around single exons. The three windows in which statistics were calculated are 
shown in green font. (c) Accuracy of joint inference of demography and the DFE. Crossvalidation was performed on 100 randomly selected par
ameter combinations for all size parameters with tolerance = 0.08. The black line represents the y = x line. All statistics were used for inference 
and were calculated after removing sites inaccessible to next-generation sequencing in both the simulated and empirical data.
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relatively long and were less likely to have interference from 
other functional elements nearby) and used for further ana
lysis (provided as a supplemental file; see Methods for further 
details).

The sensitivity of assuming the DFE inferred by 
Keightley and Eyre-Walker was evaluated by investigating 
how the reduction and recovery of nucleotide diversity 
due to BGS was affected by two very different DFE 
shapes—a DFE skewed strongly towards mildly deleterious 
mutations and another towards strongly deleterious mu
tations (supplementary table S1, Supplementary Material
online). The primary determinant of BGS effects around 
functional elements was driven by the crossover rate, for 
which we accounted. The DFE skewed towards strongly 
deleterious mutations predicted a larger number of bases 
required for recovery (as expected from previous theoretical 
results). Note that although extremely strongly deleterious 
mutations have long range BGS effects, they reduce diversity 
only by a factor of ∼0.999 (in the human population) and 
do not segregate at high frequencies and thus are unlikely 
to contribute to interference effects. Moreover, as all calcu
lations were performed assuming a conservative absence of 
gene conversion, it is unlikely that there exist unaccounted 
for interference effects from other nearby exons.

The ABC Approach
An ABC approach was employed to perform joint infer
ence of parameters of demography and purifying selection 
while accounting for BGS effects. As BGS tends to distort 
genealogies such that inferences of recent population his
tory could be biased, for the purpose of this study, recent 
size changes were specifically modeled and focused upon. 
More specifically, a simple single-size change was modeled 
∼200 generations ago (allowing for uncertainty in the age), 
which represents the Bantu population expansion 
(Schiffels and Durbin 2014), allowing estimation of the an
cestral population size (Nanc), current population size 
(Ncur), and the precise time to change (τ; figure 1a). 
Purifying selection was modeled using a DFE comprising 
four nonoverlapping uniform distributions (fig. 1a), such 
that an f0 proportion of all new mutations was neutral 
(2Nes = 0), an f1 proportion was weakly deleterious 
(1 < 2Nes ≤ 10), an f2 proportion was moderately deleteri
ous (10 < 2Nes ≤ 100), and an f3 proportion was strongly 
deleterious (2Nes ≥ 100). Note that s > 0 represents the 
selection coefficient against homozygotes, and the effect
ive population size (Ne) here corresponds to the ancestral 
size. By sampling different combinations of fi (such that 

fi ∈ [0, 1] ∀ i and 
􏽐i=3

i=0
fi = 1), all possible shapes of the 

DFE could be sampled (including bimodal DFEs). Thus, 
the inferred parameters of the DFE were the four propor
tions (fi) of new mutations in each selective class.

As ABC is a simulation-based method, all 465 exons were 
simulated using the forward time simulator SLiM (Haller 
and Messer 2019), with the specific lengths of exonic and 
intergenic/intronic regions, as well as their respective 

recombination and gene conversion rates (see Methods). 
Note that although the inference approach applied here is 
conceptually similar to that employed by Johri et al. (2020)
to Drosophila populations, the simulations performed for 
the purpose of this work were tailored to the exons in the hu
man genome and thus were newly performed. In addition, 
we have here newly added a consideration of gene conver
sion to the model. For each exon, statistics were calculated 
for three separate windows: 1) “functional” (comprising all 
sites in the exon), 2) “linked” (comprising π50 consecutive 
bases in the intergenic/intronic region), and 3) “less linked” 
(comprising the subsequent set of π50 bases in the inter
genic/intronic region; fig. 1b). A large number of statistics 
summarizing the means and variances of the site frequency 
spectrum, linkage disequilibrium (LD), and divergence for 
each window were employed when performing inference 
procedures (see Methods). The accuracy of inference was as
sessed by performing a leave-one-out crossvalidation, where
by a single-parameter combination was excluded from the 
priors while performing inference. All seven parameters 
(Nanc, Ncur, τ, and f0–f3) were estimated sufficiently well 
(fig. 1c, supplementary table S2, Supplementary Material on
line), with the smallest errors in the proportion of neutral 
mutations (f0) and the ancestral population size, and highest 
errors in the estimation of the proportion of moderately 
deleterious mutations (f2) and the current population size.

Genomic analyses of sequencing data—such as those col
lected for the Yoruba population as part of the 1000 
Genomes project (Auton et al. 2015)—are inevitably re
stricted to sites in the genome that are accessible to next- 
generation sequencing. In addition, summary statistics are 
frequently reported for regions outside of functional ele
ments to avoid the effects of selection. Such filtering could 
potentially bias the values of statistics, particularly those as
sociated with the variance of the statistics across exons. 
Indeed, when a filtering scheme replicating that of the 
1000 Genomes project was employed on simulated data, a 
drastic increase in the variance of SFS-based statistics was ob
served postfiltering (supplementary figs. S2 and S3 and table 
S3, Supplementary Material online), though almost no 
change was observed for statistics based on LD. Therefore, 
the sites excluded from the empirical data (i.e., inaccessible 
sites and those belonging to functionally important regions 
smaller than 500 bp) were also excluded from the simulated 
data, decreasing the accuracy of our inference method al
most by half (supplementary table S2, Supplementary 
Material online). Importantly, by mimicking the filtering of 
the empirical data in such an exact manner in the simulated 
data, the statistics observed in the YRI population across the 
465 exons (as shown in table 1) were well explained by the 
set of simulations employed for inference (supplementary 
figs. S4–S10, Supplementary Material online).

Inference and Comparison to Previous Studies
Upon performing inference on the Yoruba population, a 
6-fold population size increase was estimated that began 
∼300 generations ago (with an ancestral and current size 
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of 7,509 and 44,632 individuals, respectively). These esti
mates correspond well to previous neutral estimates of 
the recent history of the Yoruba population (fig. 2a). 
Interestingly, by jointly estimating population history 
and the DFE, our estimated shape of the deleterious DFE 
was highly skewed towards mild selective effects—∼50% 
of all new mutations in the exonic regions investigated 
were estimated to belong to the effectively neutral class, 
∼20% to the mildly deleterious class, and ∼30% to the 
moderately deleterious class. In addition, when dividing 
the 465 exons into two equal sets with high and low exonic 
divergence from the human ancestor, a much larger pro
portion of effectively neutral mutations was observed in 
the high-divergence set as expected (fig. 2b). These obser
vations suggest that it is possible to infer the DFE with rea
sonable accuracy and that the shape will depend upon the 
set of chosen exons (also see Campos et al. 2017).

This approach did not identify an appreciable propor
tion of strongly deleterious mutations amongst these se
lected exons, though there is of course some uncertainty 
around these estimates (presented as the posterior distri
butions provided in supplementary table S4 and fig. S11, 
Supplementary Material online). Notably however, as pre
vious studies have generally assumed a gamma distribu
tion of the deleterious DFE, it is also possible that 
constraints of the gamma distribution have resulted in 
the estimation of more mutations in the strongly deleteri
ous class. Moreover, the DFE estimated by Keightley and 
Eyre-Walker (2007, 2009) was estimated based on a set 
of genes selected either because loss-of-function muta
tions in those genes cause severe diseases (EGP data) or be
cause those genes underly inflammatory responses (PGA 
data set) in humans. Such genes are more likely to be high
ly conserved and thus to have more strongly deleterious 

mutations. Huber et al. (2017) used a wider set of genes 
and obtained a DFE more skewed towards effectively neu
tral mutations, with a very similar shape as that obtained 
by the present study (fig. 2b). Further, these observed dif
ferences in the DFE could also reflect differences in the DFE 
of different populations—the present study was con
ducted on the Yoruba population (the same data set 
analyzed by Huber et al.), while the DFE in Keightley 
and Eyre-Walker (2007) was calculated from an 
African-American population. Finally, as our method could 
only be applied to exons located in sparser regions of the 
human genome, limited to 465 in number, it is possible 
that the difference in the estimated DFE from Huber 
et al. (2017) is due to the difference in selective constraints 
experienced by the selected group of exons versus all 
exons.

Model Violations and Fit
In order to find a sufficient number of exons that were ap
propriately distant from other functional elements, we ex
cluded exons that were near phastCons elements of 
lengths larger than 500 bp (see Methods for details). 
Thus, hitchhiking effects (due to selective sweeps and/or 
BGS) generated by smaller phastCons elements were not 
accounted for in the priors. Note that most phastCons ele
ments are extremely small in length, with 50%, 90%, and 
99% of all phastCons elements being less than 10, 32, and 
132 bp respectively (supplementary table S5, Supplementary 
Material online). Theoretical calculations using Equations 1–
5 and assuming a DFE skewed towards mildly deleterious mu
tations (f0 = 0.1; f1 = 0.7; f2 = 0.1; f3 = 0.1) demonstrate 
that BGS effects generated by such small functional elements 
are extremely minor (with B = 0.993–1.0; supplementary 

Table 1. Means and Variances of Statistics from the Empirical Data for all 465 Exons and Their Linked Noncoding Regions.

5′ less linked 5′ linked Exonic 3′ linked 3′ less linked

π Mean 0.00106 0.00094 0.00075 0.00104 0.00104
SD 0.00112 0.00077 0.00053 0.0009 0.00088

θW Mean 0.00124 0.00117 0.00100 0.00121 0.00124
SD 0.00085 0.00071 0.00057 0.00074 0.0008

θH Mean 0.00112 0.00085 0.00071 0.00113 0.00107
SD 0.00245 0.00115 0.00072 0.00179 0.00159

H′ Mean −0.02132 0.06284 0.05171 −0.04963 −0.02194
SD 0.95642 0.79148 0.73348 0.99715 0.9544

Tajima’s D Mean −0.45302 −0.46848 −0.71615 −0.38713 −0.41615
SD 0.83581 0.83469 0.73082 0.86133 0.8104

Singleton Mean 0.00152 0.00160 0.00150 0.00148 0.00146
Density SD 0.00160 0.00183 0.00131 0.00157 0.00166
Haplotype Mean 0.58943 0.57756 0.73031 0.59578 0.59492
Diversity SD 0.28405 0.29629 0.18698 0.28463 0.27446
r2 Mean 0.09420 0.08984 0.07027 0.08624 0.10444

SD 0.11779 0.10688 0.04943 0.0987 0.1396
D Mean 0.00579 0.00436 0.00280 0.00524 0.00717

SD 0.01693 0.01680 0.00801 0.02008 0.02157
D′ Mean −0.58160 −0.59220 −0.64041 −0.5856 −0.54356

SD 0.37716 0.34858 0.23092 0.36485 0.38881
Divergence Mean 0.00574 0.00531 0.00430 0.00547 0.00594

SD 0.00659 0.00439 0.00428 0.00397 0.00531

SD: standard deviation.

5

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/5/m
sad100/7147633 by guest on 08 June 2023

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad100#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad100#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad100#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad100#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad100#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad100#supplementary-data
https://doi.org/10.1093/molbev/msad100


Johri et al. · https://doi.org/10.1093/molbev/msad100 MBE

table S6, Supplementary Material online) and are thus highly 
unlikely to cause unaccounted for interference effects.

Another potential caveat of our analysis is the assump
tion that ancestral alleles have been accurately inferred by 
previous studies. Keightley and Jackson (2018) noted two 
consequences of ancestral allele misidentification on bias
ing estimation of summary statistics. Firstly, when parsi
mony methods are used to infer the derived allele, 
filtering of sites can lead to a decrease in levels of diversity. 
As the 1000 Genomes data used multiple outgroups to po
larize SNPs, it will likely result in stringent filtering criteria 
(possibly removing sites that have a high mutation rate). 
Hence, although such a bias may lead to underestimation 
of population sizes, a comparison of our estimates to those 
from previous studies is justified (as other studies are also 
using the same ancestral alleles to polarize SNPs). The 
second issue noted by the authors is that parsimony 

methods can result in an overestimation of high- 
frequency–derived alleles. However, they observed that 
the unfolded SFS from the 1000 Genomes data set is 
very similar to what they obtained using their maximum 
likelihood approach (corrected for the misidentification), 
unless they restricted it to CpG sites. As we are not particu
larly looking at CpG sites alone (and as noted above, we are 
likely throwing a number of those out), our SFS should not 
be biased. In order to formally test this, the following ana
lysis was performed to evaluate the sensitivity of our re
sults to misspecification of the ancestral state. As CpG 
sites comprise of less than 1% of the human genome 
(Babenko et al. 2017), it was assumed that ∼1% of all de
rived singletons were falsely polarized and thus were ran
domly reassigned to an allele frequency of 99%. Note 
that as not all CpG sites will have segregating derived sin
gletons, this example assumes that many more sites have a 

FIG. 2. Inference of (a) recent population history and (b) the DFE of deleterious mutations in the Yoruba population. Inferences from the current 
study (using the 5′ intergenic/intronic regions) are shown in grey/black while those from previous studies are shown in the colored bars/lines. 
Note that the current population size predicted by Terhorst et al. (2017) is 356,990 and is not visible due to truncation of the y-axis. Also note 
that 2Nes for the purpose of the current study corresponds to 2Nancs as the scaling was performed with respect to the ancestral population size. 2 
hap: refers to inference performed using a single diploid individual; 4 hap: refers to inference performed using two diploid individuals; EGP: 
Environmental Genome Project (https://egp.gs.washington.edu/); PGA: Programs for Genomic Applications (https://pga.gs.washington.edu/).
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misspecified ancestral state than is likely to occur in real 
data. The accuracy of inference of parameters related to 
the demographic history was almost entirely unaffected 
by this misspecification (supplementary table S7, 
Supplementary Material online). However, there was an 
underestimation of the fraction of mutations in the weakly 
deleterious class and a corresponding overestimation of 
the moderately deleterious class (supplementary table 
S7, Supplementary Material online).

Finally, a potential caveat concerning the inferences 
performed in this study is the assumption of a common 
mutation rate across the simulated regions. Region- 
specific mutation rates estimated from the identification 
of de novo mutations in humans were therefore simulated 
to assess the magnitude of generated bias in our inference 
method. Again, although inference of parameters of the 
demographic history was unaffected, there was a slight 
underestimation of the fraction of mildly deleterious mu
tations when mutation rate heterogeneity was neglected 
(supplementary table S7, Supplementary Material online). 
Thus, although a large class of mildly deleterious muta
tions was inferred from the human data, the proportion 
of weakly deleterious mutations may be even higher. 
Despite this caveat, our inferred model fits the data 
exceptionally well for all classes (functional, linked, and 
less-linked) and across all 465 exons (figs. 3 and 
supplementary S12–S14, Supplementary Material online). 
This fit was evaluated by simulating the best-fit model 
ten times, and comparing the distribution of all the sum
mary statistics with those obtained from the empirical 
data. As can be seen in figure 3, predicted patterns of 
LD, the SFS, and divergence match the empirical data 
well. It should be noted that the figure compares the entire 
distribution of statistics for all 465 exons between the best- 
fitting model and the empirical data—a comparison that is 
usually restricted to mean values of summary statistics and 
thus suggests an overall excellent fit between the esti
mated best model and real data. Importantly, despite 
the strong fit of our inferred model to the data, it is very 
likely that additional parameter combinations under alter
native models (including a more complex demographic 
history) could also be fit to the data (as discussed in 
Johri, Aquadro, et al. 2022). As such, this model (as with 
any model fitting exercise) should only be viewed as a vi
able model rather than, of course, as a “correct” model.

Evaluating the Identifiability of a Beneficial 
Mutational Class
As beneficial mutations are expected to be rare and only 
episodically reach fixation, they were not part of the base
line model fit to the data, which was instead focused upon 
commonly and continuously acting evolutionary pro
cesses. Nonetheless, the identification of beneficial muta
tions is of great interest, and thus, the effects of a model 
violation consisting of various rates and strengths of recur
rent positive selection within the context of the fit baseline 
model were evaluated. The proportion of new beneficial 

mutations (fpos) was assumed to be 0.1%, 1%, or 5%, and 
the DFE of beneficial mutations was modelled to be expo
nentially distributed with mean sb, such that 2Nesb= 10, 
100, or 1000, where sb > 0 is the increase in fitness of mu
tant homozygotes, and all mutations were assumed to be 
semidominant. Combinations of the above parameters 
yielded nine different evolutionary scenarios ranging 
from weak and infrequent to common and strong positive 
selection.

Interestingly, when 0.1% or 1% of new mutations are 
beneficial and the strength of positive selection is weak 
or moderate (2Nesb = 10 or 100), there is almost no differ
ence between the distribution of statistics across the 465 
exons in the absence versus presence of positive selection 
(supplementary figs. S15–S23, Supplementary Material on
line). This observation is consistent with results from 
Drosophila melanogaster (Johri et al. 2020) and suggests 
a general inability to identify this class of mutations, if pre
sent. However, when positive selection is common 
(fpos = 1 − 5%) and strong (2Nesb = 1000), the distribution 
of statistics including Tajima’s D, r2, and divergence does 
not resemble observed empirical distributions (figs. 4
and S15–S23, Supplementary Material online). Therefore, 
while strong and frequent positive selection is inconsistent 
with empirical data, weak/moderate infrequent positive 
selection remains consistent with observed patterns of 
variation, though this addition does not improve the fit. 
This observation emphasizes the peril of naively fitting 
models of positive selection to data while neglecting com
mon evolutionary processes (see Johri et al. 2022c), as well 
as the difficulty in being able to accurately infer the pro
portion and DFE of new beneficial mutations. More gener
ally however, it will be of interest in the future to evaluate 
whether a joint inference approach that explicitly includes 
a class of beneficial mutations can be successful.

Closing Thoughts
Despite some important methodological differences 
amongst approaches, one commonality that has emerged 
in the study of the Yoruba population is the presence of 
an appreciable class of weakly deleterious (1 < 2Nes ≤ 
10) mutations. This observation has a few noteworthy im
plications. Firstly, the BGS effects arising from mildly dele
terious mutations cannot be accounted for by a simple 
rescaling of effective population size, as these mutations 
will result in a significant skew towards rare alleles; this 
may in turn strongly bias demographic inference when 
unaccounted for (Ewing and Jensen 2016; Johri et al. 
2021). Secondly, weakly deleterious mutations in regions 
of low recombination can result in associative overdomi
nance, which could lead to an increase in both nucleotide 
diversity and LD (Zhao and Charlesworth 2016; Becher 
et al. 2020; Gilbert et al. 2020). Additionally, the linked ef
fects of very weakly deleterious mutations (1 < 2Nes < 
2.5) are still not well understood (though see 
Charlesworth 2022), and thus, their common presence 
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in such inference suggests the need for further study of 
these weak selection effects.

Finally, as the human genome is characterized by a small 
fraction (<10%) of functional sites (Siepel et al. 2005) and in
deed is amongst the best-annotated and best-studied gen
omes to date, this species probably represents a case for 

which the joint inference of demography with the DFE is least 
critical. In other words, in functionally dense genomes in 
which neutral sites free of BGS effects may be difficult to 
identify or may not exist at all, as well as in less well-studied 
species in which functional elements may not be fully anno
tated for the purposes of exclusion when performing 

FIG. 3. Fit of the best model inferred by our method to the empirical data, as shown by the distribution of (a) nucleotide diversity, (b) Tajima’s D, 
(c) r2, and (d ) divergence per site, across the 465 exons, for each of the three windows: functional, linked, and less linked intergenic/intronic 
regions. The simulated best model (with 10 replicates) is shown in red, while the observed empirical distributions of the same statistics in 
the YRI population are shown in the white distributions.
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demographic inference, this type of joint inference will be 
critical for accurate estimation. This disparity is partly evi
denced by comparing joint inference performed in D. mela
nogaster and in humans. In the former, the incorporation 
of BGS effects into the joint inference scheme led to consid
erably lower estimates of population growth and higher 

proportions of weakly deleterious mutations relative to stud
ies utilizing two-step inference approaches (Johri et al. 2020), 
whereas in humans, the joint inference estimates provided 
here are relatively similar to previous two-step estimates.

That said, earlier studies in humans as well as model or
ganisms such as D. melanogaster (e.g., Beichman et al. 2017

FIG. 4. Fit of the estimated best model to the empirical data in the presence of positive selection. (a–c) Distribution of Tajima’s D, r2, and di
vergence per site across the 465 exons (only in the “functional” windows) for the best-fitting model (in red), the best-fitting model with positive 
selection (in blue), and their overlap (in purple). The distribution of the empirical data is shown in the white distributions. Examples of varying 
extents of positive selection are shown: (a) infrequent (fpos = 0.1%) and weak (2Nesb = 10), (b) moderately frequent (fpos = 1%) and moderately 
strong (2Nesb = 100), and (c) common (fpos = 5%) and strong (2Nesb = 1000). (d ) A grid depicting the fit of varying extents of positive selection 
to the data with a check mark indicating that the addition of positive selection does not worsen the fit of the model to the data, and the number 
of “×” marks indicating the severity of the misfit to the calculated statistics generated by the addition of positive selection.
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and Garud et al. 2021) have shown that the specific models 
of demography that have been fit previously to these po
pulations do not recapitulate all aspects of the data. 
Specifically, when the inferred models are simulated, 
they explain certain aspects of the data, but poorly fit 
others (e.g., LD). Conversely, we have here shown that in
corporating the specific details of genome architecture 
with locus-specific recombination rates, employing a stat
istical approach that can account for multiple aspects of 
the data, and jointly inferring population history with 
the DFE utilizing BGS expectations, results in a remarkably 
good fit to all aspects of levels and patterns of variation 
and divergence. This once again highlights the importance 
of constructing an appropriate evolutionary baseline mod
el for genomic analysis, and of relaxing common but poorly 
supported inference assumptions.

Methods
Data
This study was based on the human reference genome 
hg19/GRCh37 and its corresponding resources. In brief, 
the human reference genome (hg19) was downloaded 
from the UCSC Genome Browser (accession number: 
GCA_000001405.1; Church et al. 2011); a catalogue of 
common genetic variation in the Yoruba population was 
obtained from the 1000 Genomes Phase 3 (Auton et al. 
2015) together with information about genome accessibil
ity to next-generation sequencing (as determined by the 
“tgpPhase3AccessibilityStrictCriteria” track of the UCSC 
Table Browser); ancestral alleles as determined by the six- 
way primate EPO alignments were downloaded from 
Ensembl (release 74; Flicek et al. 2014; Cunningham et al. 
2022); gene annotations (including exon start and end po
sitions) were downloaded from the NCBI Human Genome 
Resources archive (Sayers et al. 2022); annotations for 
small nucleolar and micro-RNAs (sno/miRNAs) as well as 
conserved elements identified based on the 100-way 
PhastCons score (“phastConsElements100way;” Siepel 
et al. 2005; Pollard et al. 2010) were downloaded from 
the UCSC Table Browser; and population-specific recom
bination rates were obtained from the HapMap project 
(“hapMapRelease24YRIRecombMap;” Altshuler et al. 
2005). The URLs for file downloads are provided in 
supplementary table S8, Supplementary Material online.

Selecting a Set of Human Exons for Analysis
For every exon in the human genome, we calculated the 
decay of nucleotide diversity at linked neutral sites caused 
by BGS, taking into account the specific exon length and 
recombination rate (assuming the rate of gene conversion 
to be zero in order to be conservative). This was done ana
lytically using equations 3a and 3b derived in Johri et al. 
(2020) and presented as equations 1–5 in the Results sec
tion. The DFE was assumed to follow that inferred by 
Keightley and Eyre-Walker (2007): f0 = 0.22, f1 = 0.27, 
f2 = 0.13, and f3 = 0.38, representing the proportion of 

new mutations belonging to the neutral, weakly deleteri
ous, moderately deleterious, and strongly deleterious 
classes, respectively. Nucleotide diversity was predicted 
at sites 1 to 100,000 bp away from the end of each exon, 
and a logarithmic function was fit such that 
π = slope × ln (x) + intercept, where x is the distance of 
the site from the functional region in base pairs. The values 
of slope and intercept were used to calculate the expected 
number of base pairs required for a 50% recovery of π 
(referred to as π50). The script to perform such analytical 
calculations can be accessed at https://github.com/ 
paruljohri/Joint_Inference_DFE_demog_humans/blob/ 
main/selecting_exons/add_numbp50_to_exons.py. The 
distance between every exon and its nearest functional 
element (i.e., all neighboring exons, as well as sno/ 
miRNAs and phastCons elements larger than 500 bp) 
were calculated, and exons with a distance greater than 
4 × π50 were kept for further analysis. In addition, only 
exons that were 2–6 kb in length were selected (in order 
to observe significant BGS effects). This procedure yielded 
a total of 465 exons with recombination rates within 0.5– 
10cM/Mb. Note that the selected exons were not re
stricted to single-exon genes.

Modeling the Simulation Framework for ABC
Each of the 465 exons was simulated using SLiM v.3.1 
(Haller and Messer 2019) and was comprised of a function
al region of the length of the exon, with a single linked in
tergenic/intronic region of size 4 × π50. Intergenic/intronic 
regions were assumed to be neutral, whereas exonic re
gions experienced purifying selection given by a discrete 
DFE comprised of four nonoverlapping uniform distribu
tions, with f0, f1, f2, and f3 representing the proportion of 
new mutations belonging to the neutral, weakly deleteri
ous, moderately deleterious, and strongly deleterious 
classes, respectively. Simulations were performed using a 
constant mutation rate of 1.25 × 10−8 per site per gener
ation (Kong et al. 2012) and region-specific crossing over 
rates obtained from the HapMap project (Altshuler et al. 
2005) as indicated in the Data section and 
supplementary table S8, Supplementary Material online, 
utilizing the average crossing over rate across the exonic 
and corresponding intergenic/intronic regions (both 5′ 
and 3′ intergenic/intronic) for each exon.

Modeling Gene Conversion
The rate of noncrossover gene conversion has been esti
mated to be 5.9 × 10−6 per site per generation 
(Palamara et al. 2015; Williams et al. 2015), with tract 
lengths found to be between 55 and 290 bp (Jeffreys and 
May 2004) and between 100 and 1000 bp (Williams et al. 
2015). In humans and mice, crossover recombination 
events (COs) are ∼5–15 times less frequent than noncross
overs (NCOs), but their conversion tracts are ∼2–8 times 
longer (Jeffreys and May 2004) and most of these events 
occur in recombination hotspots (McVean et al. 2004). 
Although the mean rate of gene conversion per site (i.e., 
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the probability that any given site is affected by the process 
of gene conversion) can be estimated with confidence and 
is consistent across the studies mentioned above, it is quite 
difficult to disentangle the tract length from the rate of ini
tiation of gene conversion. Moreover, previous studies 
have found that gene conversion rates are correlated with 
the rate of crossing over in humans (Padhukasahasram 
and Rannala 2013; Glémin et al. 2015; Palamara et al. 
2015). We thus assume that tract lengths are geometrically 
distributed (as modeled in SLiM) with a mean of 125 bp 
(Jeffreys and May 2004) and that gene conversion rates 
are 5 times those of recombination rates, while maintaining 
the average rate of gene conversion of 5.9 × 10−6 per site 
per generation.

Demographic History
To correct for confounding effects of BGS on population 
history, a simple demographic history comprised of a single, 
recent population size change was modeled. As Gutenkunst 
et al. (2009) and Gravel et al. (2011) fit a single-size change 
model that yielded a size change relatively long ago (∼6–8k 
generations), those models were not used to parametrize 
the model in this study. Instead, we based our model on pre
vious studies that have estimated a recent increase in popu
lation size of the Yoruba population, corresponding to the 
Bantu expansion, with the estimated expansion occurring 
∼200 generations ago. Specifically, Tennessen et al. (2012)
estimated the time of change to be 205 generations ago 
(corresponding to 5,115 years ago with a generation time 
of 25 years), Schiffels and Durbin (2014) estimated the 
time of change to be 200 generations ago (corresponding 
to 6,000 years ago assuming a generation time of 30 years), 
and Terhorst et al. (2017) estimated that the growth in the 
population began 1,724 generations ago and significantly in
creased around 517 generations ago (corresponding to 50k 
and 15k years ago assuming a generation time of 29 years). 
The YRI population was thus simulated to be under equilib
rium until a size change (exponential increase or decrease) 
occurred ∼200 generations ago (referred to as τ) with uncer
tainty modeled around this age (supplementary fig. S24, 
Supplementary Material online). The ancestral (Nanc) and 
current (Ncur) population sizes were inferred using ABC 
(see below).

ABC
A total of seven parameters were inferred using ABC: f0, f1, 
f2, f3, Nanc, Ncur, and τ.

The fi were randomly sampled in increments of 0.05 be
tween 0 and 1, that is, fi ∈ {0.0, 0.05, 0.1, . . . , 0.95, 1.0} 

such that 
􏽐i=3

i=0
fi = 1. Both Nanc and Ncur were sampled from 

log uniform distributions between 5,000 and 50,000 dip
loid individuals. A total of 2,000 parameter combinations 
were simulated. Simulations for each parameter combin
ation were rescaled to a different extent, determined as fol
lows. In order to avoid simulating extremely small 
population sizes and having a very large rescaling factor, 

rescaling was restricted to a maximum of 200-fold and a 
minimum of 5,000 individuals, that is, 
rescaling factor = min min {Nanc, Ncur}

5000 , 200
􏼈 􏼉

. For each par
ameter combination, the 465 exons with their specific 
lengths, intergenic/intronic region, crossover, and non
crossover rates were simulated for a burn-in period of 
10Nanc generations plus an additional 4Nanc generations 
(in order to estimate the rate of divergence post burn-in) 
after which there was an exponential size change for τ gen
erations. Fifty diploid individuals were sampled at the end 
of each simulation.

Calculation of Statistics from Simulated Data
For each exon, three nonoverlapping windows were defined: 
1) “functional” (comprised of all sites in the exonic region), 
2) “linked” (sites within [0, π50] bases linked to the exon, 
with 5´ and 3´ being designated separately), and 3) “less 
linked” (sites within (π50, 2π50] bases linked to the exon, 
with 5´ and 3´ being designated separately). Next, any sites 
deemed inaccessible in the 1000 Genomes Phase 3 data 
were excluded (see Data section above) and sites in the in
tergenic/intronic regions that were annotated to be func
tionally important (i.e., phastCons elements) that were 
smaller than 500 bp were also excluded. Pylibseq v.0.2.3 
(Thornton 2003) was used to obtain the means and stand
ard deviations of the following statistics from both the un
filtered and filtered simulated data: nucleotide diversity (π), 
Watterson’s θ (θW), statistics that capture the relative pro
portion of high and intermediate frequency alleles (θH, H′), 
statistics that capture the relative proportion of rare alleles 
of the SFS (Tajima’s D, singleton density), and statistics that 
summarize the LD patterns (haplotype diversity, r2, D, and 
D′). Together with divergence (see below), these amounted 
to a total of 66 summary statistics that were employed to 
perform inference using the ABC method. It should be 
noted that although ABC-based approaches can suffer 
from the “curse of dimensionality,” that is, ABC inference 
can become inaccurate and unstable if an extremely large 
number of statistics are employed (Beaumont 2010), ex
cluding statistics always resulted in a reduction of accuracy 
in our study. Moreover, different statistics from different 
windows were important to accurately predict different 
parameters (see Johri et al. 2020 for a detailed analysis). 
Therefore, all 66 summary statistics were used for inference.

Divergence was calculated using the number of substi
tutions (as provided by SLiM) that occurred after the 
burn-in period of 10Nanc generations. As a rate of substitu
tions was obtained from the simulations, these rates were 
converted to divergence values as follows. The total num
ber of fixed substitutions per site (divrate) was calculated 
from the simulations over the course of 4Nanc(scaled) + 
200 generations for each parameter combination. 
Divergence values (div) for each parameter combination 
were then obtained using

div = divrate ×
tsplit

(α × tgen)
×

1
(4Nancα + 200) 
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where tsplit is the time since the split between chimpanzees 
and humans, which was assumed to be a minimum of 6 
(Nachman and Crowell 2000) and a maximum of 12 mil
lion years ago (Chintalapati and Moorjani 2020) and the 
mean of these values was used when performing final infer
ence. The generation time (tgen) in humans was assumed 
to be 25 years following Gutenkunst et al. (2009), and α 
is a scaling factor (which was different for each parameter 
combination). Thereby, the sites that were excluded when 
calculating statistics from single nucleotide polymorph
isms (SNPs) were also excluded when calculating diver
gence from simulated data. Note that as divergence per 
site was calculated by multiplying the rate of fixation of 
mutations in simulated data with the total number of gen
erations to the ancestor and as filtering of sites resulted in 
some regions having very few accessible sites (e.g., 4–7), by 
chance, some replicates had higher values, which resulted 
in values of divergence per site > 1 in this extreme param
eter space (as can be seen in figs. 3 and 4).

Calculation of Statistics from Empirical Data
Summary statistics were calculated from 50 YRI individuals 
(25 males and 25 females) selected at random from the 
1000 Genomes Phase 3 data (Auton et al. 2015 and see 
supplementary table S9, Supplementary Material online, 
for the list of individuals), using only sites located in strictly 
accessible regions and outside of phastCons elements (see 
Data section above). Similar to the simulated data, pylib
seq v.0.2.3 (Thornton 2003) was used to calculate the 
means and standard deviations of the 66 summary statis
tics (as outlined above), based on the 81% of sites retained 
after filtering (89% in exons, 80% in 5′ intergenic/intronic 
regions, and 79.4% in 3′ intergenic/intronic regions; 
supplementary fig. S25, Supplementary Material online). 
Thereby, divergence was calculated based on fixed differ
ences between reference and ancestral alleles that were 
nonpolymorphic in the YRI data set. Final values of all sta
tistics obtained from the 50 randomly selected diploid YRI 
individuals were very similar to those obtained using all in
dividuals (supplementary table S10, Supplementary 
Material online).

ABC Inference
The ABC approach was executed using the R package “abc” 
(Csilléry et al. 2012). A correction for the nonlinear rela
tionship between the parameters and the statistics was 
employed using the “neural net” regression method with 
the default parameters provided by the package. A 
100-fold leave-one-out crossvalidation was performed in 
order to determine the performance and accuracy of infer
ence for the following values of tolerance: 0.05, 0.08, and 
0.1. As inference was most accurate with a tolerance of 
0.08 (supplementary table S2, Supplementary Material on
line), this value was employed for inference of final param
eter values, that is, 8% of all simulations were accepted by 
ABC to estimate the posterior probability of parameter es
timates. Final point estimates for each parameter were 

calculated by performing inference 50 times and taking 
the mean of the (50) weighted medians of the posterior 
estimates.

Simulations with Mutation Rate Heterogeneity
Sex-averaged mutation rate maps for humans were ob
tained from Francioli et al. (2015) (https://www. 
nlgenome.nl/menu/main/app-download; last accessed 
Sep 22, 2022). As rates were provided for each nucleotide 
(i.e., A to C and A to G), the nucleotide composition of 
each exon was determined separately for the 5′ inter
genic/intronic, exonic, and 3′ intergenic/intronic regions 
to obtain region-specific mutation rates. Specifically, for 
each exon, the average rate of the three regions multiplied 
by a mean mutation rate of 1.25 × 10−8 per site per gen
eration (as rates were normalized with respect to this 
mean mutation rate) was used for simulations.

Simulations of the Best-Fitting Model
When simulating the best-fitting model, the best estimates 
(weighted median) of each parameter were used. Ten in
dependent replicates of each of the 465 exons were simu
lated, and the distribution of all statistics (postfiltering) for 
each window was compared with the corresponding em
pirical data.

Simulations with Positive Selection
When simulating the best-fitting model with positive se
lection, the best estimates (weighted median) of each par
ameter were used. To test the effect of recurrent selective 
sweeps, beneficial mutations were assumed to be a frac
tion fpos of all new mutations in exonic regions and their 
fitness effects were assumed to follow an exponential dis
tribution with mean sb, such that 2Nancsb= 10, 100, or 
1000. The fitness effects of the remaining exonic mutations 
(1 − fpos) followed the estimated DFE (comprising neutral 
and deleterious mutations).

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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Data Availability
All scripts used to perform the research in this study have 
been made available at https://github.com/paruljohri/ 
Joint_Inference_DFE_demog_humans. The final set of 
exons used in the study, along with their mutation and re
combination rates, is provided as a supplemental file 
(single_exons_465_suppfile.xlsx) in the Supplementary 
data.
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