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Abstract

This commentary investigates the important role of computational pipeline and parameter choices in performing mutation
rate estimation, using the recent article published in this journal by Bergeron et al. entitled “The germline mutational
process in rhesus macaque and its implications for phylogenetic dating” as an illustrative example.
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Background

The handful of non-human primate germline mutation rate
studies published to date [1–7] are largely similar with regards
to their experimental design—using PCR-free library prepa-
ration protocols (except [2]), followed by 100–150 bp paired-
end Illumina sequencing. They also share similar bioinformatic
pipelines—aligning reads to a species-specific reference assem-
bly, marking (or removing) duplicates, performing a base-quality
score recalibration to improve variant detection (except [1, 4, 6]),
and calling variants using the Genome Analysis Toolkit (GATK)
[8, 9] (except [1]). This procedure is then followed by an iden-
tification of de novo mutation candidates via the detection of
Mendelian violations (e.g., sites at which the offspring is het-
erozygous despite both parents being homozygous for the same
allele). However, several important differences exist in the es-
timation of the number of loci at which genuine de novo mu-
tations can be identified (often referred to as “callable sites”,
which are part of the denominator in the rate estimation), as

well as the computational filters developed to mitigate false-
positive and false-negative results. Importantly, these differ-
ences have led to datasets that are exceedingly difficult to
compare.

Recently, Bergeron et al. [10] used genome-wide sequencing
data from 19 rhesus macaque (Macaca mulatta) trios to estimate
a mean spontaneous germline mutation rate of 0.77 × 10–8 per
base pair per generation, which is 32.8% higher than the per-
generation rate of 0.58 × 10–8 per base pair previously reported
by Wang and colleagues for the species [6]. This difference is
likely driven by a combination of factors, including (i) biological
(e.g., parental ages at puberty and reproduction), (ii) experimen-
tal (e.g., the design of the study by Bergeron et al. differs from
most of the aforementioned work by amplifying samples using
PCR—a process that introduces errors ascribed to both mistakes
made by the polymerase as well as thermal damage—followed
by sequencing on a BGISEQ-500 platform); and (iii) methodolog-
ical (e.g., user-defined criteria, as is the focus here).
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2 Studying mutation rate evolution in primates

Figure 1: Influence of genotype quality (GQ) thresholds on mutation rate estimates. Bergeron et al. found that varying their GQ threshold from 10 to 90 led to mean
mutation rate estimates ranging from >1.1 × 10–8 to <0.7 × 10–8 per base pair per generation in their trios (highlighted in red), as adapted from Bergeron et al. [10].
Because this criterion can lead to systematic biases in rate estimates, rather than choosing this filtering threshold arbitrarily, the sensitivity and specificity of the

detection pipeline should be evaluated using simulations and/or benchmarking datasets for which the “ground truth” is known.

Quantifying the Impact of Variability in
User-Defined Criteria

Most primates studied to date exhibit mutation rates of ∼10–8

per base pair per generation. Thus, identifying the ∼70 newly
arising mutations in an individual genome [11] can resemble
the proverbial search for needles in a haystack. Complicating
this search are technical artifacts resulting from amplification
biases, the inevitable presence of sequencing errors (which oc-
cur at rates that are ∼2 orders of magnitude higher than primate
mutation rates), as well as the bioinformatic pipelines used to
process the high-throughput sequencing data generated. Accu-
rately distinguishing genuine de novo mutations from artifacts

thus requires the application of stringent computational filter
criteria. As such, choices of filtering criteria and their thresh-
olds can have profound impacts on the resulting mutation rates
estimated.

To highlight just 1 example, Bergeron et al. found that vary-
ing their genotype quality (GQ) threshold from 10 to 90 identi-
fied between ∼55 and ∼35 de novo mutations per trio, leading to
mean mutation rate estimates ranging from >1.1 × 10–8 to <0.7
× 10–8 per base pair per generation in their trios (Fig. 1). The well-
established and commonly used GATK Best Practices pipeline
for variant filtering [8]—the software used by the authors to call,
genotype, and filter variants—recommends a GQ threshold of
≥20 to obtain high-quality genotype calls [12]. The same geno-
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Figure 2: Histogram of genotype quality (GQ) and reference genotype quality (RGQ) scores of 1 million variant and invariant sites called in one of the rhesus macaque

trios of Bergeron et al. [10] (excluding sites ≥99). The 2 annotations are calculated differently by GATK [8, 9]; thus it is inappropriate to consider them as equivalent
when filtering variants and estimating the callable genome, respectively.

type quality cut-off of GQ ≥20 has also been recommended in
the recently published guidelines for the identification of de novo
mutations in studies of rare human disease [13]. In contrast, the
results presented by Bergeron and colleagues are based on a GQ
threshold of ≥60—a higher threshold that may serve to increase
the confidence in the assigned genotypes. While high thresh-
olds may sound advantageous, the systematic biases in rate es-
timation observed by the authors demonstrate the need to jus-
tify a specific GQ filtering threshold for any given dataset. Ide-
ally, this justification would include simulations incorporating
realistic sequencing error models, for which the “ground truth”
is known, thus allowing for the investigation of the effects of
different GQ thresholds on the sensitivity and specificity of the
detection pipeline. Such a justification is lacking in their study,
rendering their choice largely arbitrary. Benchmarking studies
against large, well-characterized datasets can also provide im-
portant insights, however the validation performed by Bergeron
et al. using a single chimpanzee trio (previously published by
several of the authors) is less useful in this regard, because (i)
the previous study used a similarly high GQ threshold (≥65) [5]
as their own pipeline (≥60) and (ii) previously identified de novo
mutation candidates were not independently validated by an or-
thogonal technology (e.g., by Sanger sequencing all genotypes of
the trio).

To obtain a mutation rate per base pair per generation, the
number of de novo mutation candidates (corrected by the false-
positive rate) is divided by (2x, in diploids) the number of sites
at which genuine de novo mutations could have been identified
(corrected by the false-negative rate). To determine the number
of callable sites, Bergeron et al. used GATK’s HaplotypeCaller in
BP RESOLUTION mode to obtain annotations for each site in the

genome (variable and invariable), keeping only those sites that
passed their filters. Although this strategy is expected to per-
form well for the majority of their selected filtering criteria, GQ
thresholds are an important exception. Specifically, GATK geno-
type quality scores at invariant sites (referred to as “reference
genotype quality” or “RGQ” in GATK 3) are calculated differently
than those at variant sites and are thus not directly comparable
(see Fig. 2). Consequently, different thresholds need to be applied
to variant and invariant sites to avoid any bias in downstream
analyses—a consideration neglected by the authors.

More generally, Bergeron et al. [10] based their filtering
thresholds on a manual (visual) curation of their de novo mu-
tation candidates. During variant calling, GATK’s Haplotype-
Caller locally re-assembles genomic regions to determine poten-
tial haplotypes and re-aligns the reads to those that are most
likely [9]. The authors visually explored their 744 candidate de
novo mutations both before and after variant calling, exclud-
ing 81 and 50 variants as false-positive calls, respectively (cor-
responding to false-positive rates of 10.9% and 6.7%). Because
initial read alignments can differ from the final alignments (see
Fig. 3A), concordance between the 2 inspected datasets was
poor (with an overlap of 47 variants [56%]). Problematically—
and rather perplexingly—the authors based their analyses on
the dataset obtained from the visual inspection of the initial
(i.e., pre–variant calling) alignments. For the sake of illustration,
Figs 3B and C show 2 sites that have been identified as de novo
mutation candidates by the computational pipeline of Bergeron
et al., despite failing the definition of a de novo mutation—either
because the offspring is homozygous for the same allele that is
carried by both parents (in other words, there is no mutation
at that site; panel B) or because 1 of the parents is heterozy-
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(A)

(B)

(C)

Figure 3: Manual (visual) curation of de novo mutation candidates. (A) Initial read

alignments (pre–variant calling) can differ from the final (post–variant calling)
alignments. (B, C) Two de novo mutation candidates identified by the computa-
tional pipeline of Bergeron et al. that fail the definition of a de novo mutation. The

example in panel (B) shows no evidence for the alternative allele (mutation) in
the offspring, while that in panel (C) shows that the dam is heterozygous at the
locus of interest and could hence have passed on the mutation to the offspring
(adapted from Bergeron et al. [10])—illustrating the pitfalls of their approach of

basing the false-positive rate estimation on alignments obtained before rather
than after variant calling.

gous at the locus of interest and could hence have passed the
mutation on to their offspring (panel C). This, combined with
other results found in their Supplementary Material, suggest 2
possibilities. Either there exist systematic issues in their com-
putational pipeline that resulted in the (incorrect) inclusion of
candidate sites that do not constitute Mendelian violations, or
their computational pipeline correctly identified Mendelian vio-
lations but they are simply unable to discern between genuine
de novo mutations and false-positive calls based on the initial

alignments as reads were re-aligned during the variant calling
process. Assuming correct pipeline implementation, Fig 3 sug-
gests that visual inspections need to be performed on the final
alignments in order to accurately estimate and account for false-
positive calls. For example, quite apart from the variation due to
the GQ threshold noted above, simply using the final alignments
under the authors’ implementation would itself result in a 5.2%
higher mutation rate estimate for the species (0.81 × 10–8 per
base pair per generation).

Finally, in addition to considering false-positive rates, it
is equally important to carefully estimate the rate of false-
negatives—i.e., genuine de novo mutations that have either not
been identified or that failed one or more of the applied filter-
ing thresholds. Amongst their callable sites (i.e., positions that
survived filtering, including the strict genotype filtering thresh-
old), Bergeron et al. [10] estimated the false-negative rate of their
study as the proportion of genuine heterozygote sites (i.e., het-
erozygous sites in the offspring for which the parents were ho-
mozygous for 2 different alleles) that failed their site and allelic
balance filters. In so doing, the authors neglected to account for
several other sources of false-negative calls. Specifically, given
that their method operates on the variant call set, the authors
are unable to take into account any false-negatives that arose
due to errors in the earlier steps in their discovery workflow,
including read alignment and post-alignment processing. The
matter is further complicated because the authors cannot ac-
tually evaluate a “ground truth” dataset—in other words, a site
appearing as a heterozygote might in fact not be heterozygous.
Given the many different steps involved in the identification of
de novo mutations (alignment, post-alignment processing, vari-
ant calling, and filtering), it is thus essential to take into ac-
count the impact of the entire computational pipeline in order
to obtain a realistic estimate of the false-negative rate. This ap-
proach has been successfully implemented in earlier studies by
simulating synthetic mutations via allele-dropping according to
characteristics drawn from distributions observed in the specific
dataset [e.g., 1, 2, 7]. Moreover, unlike in the method applied by
the authors, the positions of all synthetically generated de novo
mutations are known a priori in these simulations, thus allow-
ing for reliable performance evaluations and hence parameter
justifications.

Conclusions

The study conducted by Bergeron and colleagues [10] high-
lights the profound, far-reaching influences that computational
pipeline and parameter choices can have on mutation rate es-
timates. Although a much-needed community-level consensus
on “gold standard” computational pipelines for pedigree-based
mutation rate estimation remains elusive (not least due to dif-
ferences in study design), the choices made in individual stud-
ies still require justification and the range of possible mutation
rates resulting from these choices require quantification. When
left unjustified owing to a lack of ground-truthing, these choices
are essentially arbitrary, resulting in a series of highly interesting
datasets across primates that cannot be meaningfully utilized
for comparative genomic analysis owing to their lack of equiva-
lency.

Editor’s Note:

Several recent studies by different groups present data on mu-
tation rate estimation for primates derived from pedigree se-
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quencing. Within this active and new field, a range of analysis
methods are being used. As the review process of Bergeron et al.
[10] has shown, there are different views regarding the choice
of particular methods and pipelines. Following up on the review
process, this article is part of an exchange of opinions between
one of the reviewers (this commentary) and the authors [14], in
the spirit of contributing to the development of consensus in this
rapidly developing area of research.
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